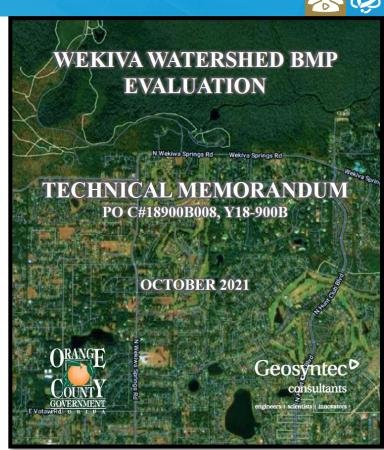
Geosyntec consultants

Groundwater Assessment and Treatment Approaches for Springs BMAPs

Mike Hardin, Ph.D., P.E., CFM – Geosyntec Consultants, Inc.

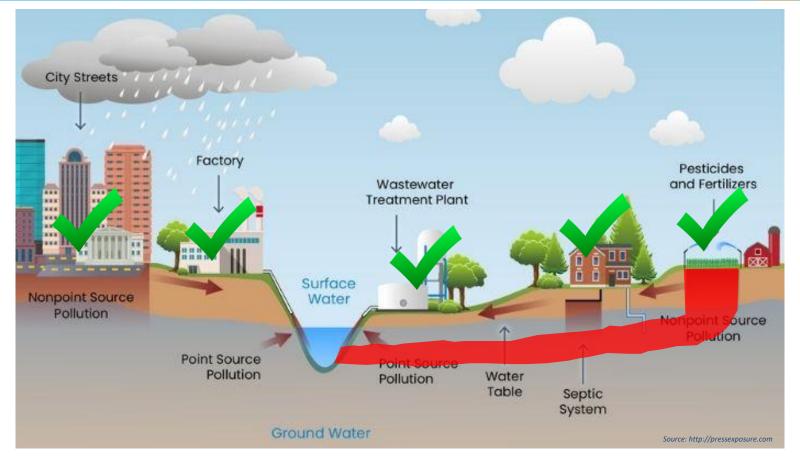

2025 FLERA Annual Conference September 17-18, 2025 Alachua County, Florida

Presentation Outline

- Introduction
- Assessment of nutrients in groundwater
- Available treatment technologies
- Wekiva PFA case studies
- Closing thoughts

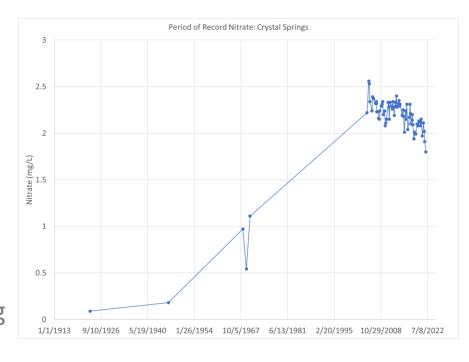
Introduction

Geosyntec consultants


Introduction

- Springs BMAPs are a significant challenge
- Several sources contribute nutrients to springs
 - Septic sources
 - Wastewater RIBs
 - Stormwater infiltration areas (dry ponds)
 - Rainfall that infiltrates directly to the ground (UTF)
 - Fertilizer from Ag and recreation
- Some of these sources are very difficult to control, if not impossible

What is the Issue?



Introduction

- Implementation of surface controls may take a long time to show up at the spring vent
 - Travel time can be significant,
 on the order of decades
 - Even if we implement all the surface controls, we may not see the results of this for a long time

Assessment of Nutrients in Groundwater

Geosyntec consultants

How can we assess the nature and extent of nutrients in groundwater?

- Several technologies are used to evaluate groundwater flow patterns and nutrient concentrations.
- Groundwater profiling using several techniques based on lithology:
 - Unconsolidated soils (sands/silts clays): direct push technology (DPT) drilling methods
 - Consolidated/lithified rock (limestone): sonic drilling methods

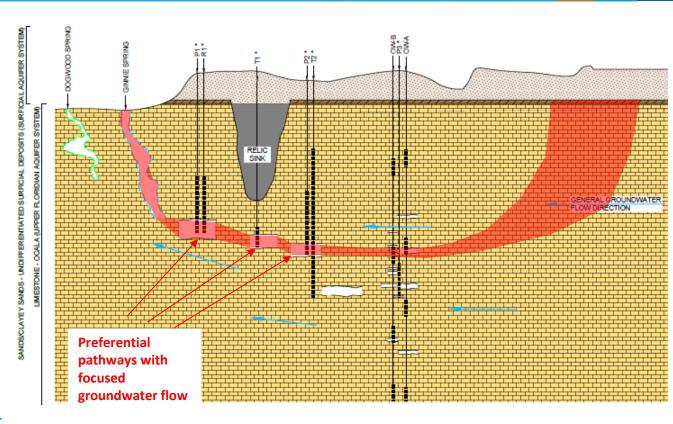
DPT Drilling and Sampling

- Ideal for unconsolidated conditions only
- Collection of continuous soil samples
- Collection of high-resolution grab groundwater quality samples
- Discrete sampling intervals can be selected based upon the lithology observed
- Permanent well install

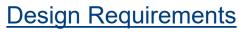
Sonic Drilling and Sampling

Sonic drilling allows for:

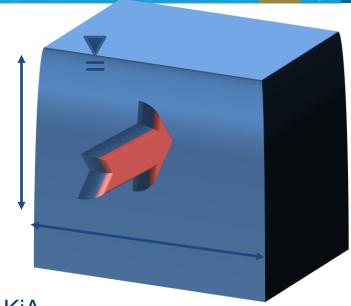
- Ideal for unconsolidated or lithified rock conditions
- Collection of continuous soil samples
- Pumping of discrete intervals to obtain water quality samples and to assess aquifer permeability
- Permanent well install in intervals of interest where aquifer permeability is high and elevated nutrient results are observed



Nutrient Groundwater Assessment


- Document the nature and extent of nutrients in groundwater;
- Identify level of heterogeneity present and locate primary flow paths; and
- Calculate the groundwater and nutrient flux

Groundwater and Nutrient Flux Calculation



- Define System Objective(s)
- 2. Conceptual Site Model
 - Target Contaminant Footprint
 - Lithology
 - Permeability
 - Groundwater Flow

Design Approach Options

- Hand calculations (determine groundwater flux across a plane)
- 2. Groundwater modeling

Q = KiA

where:

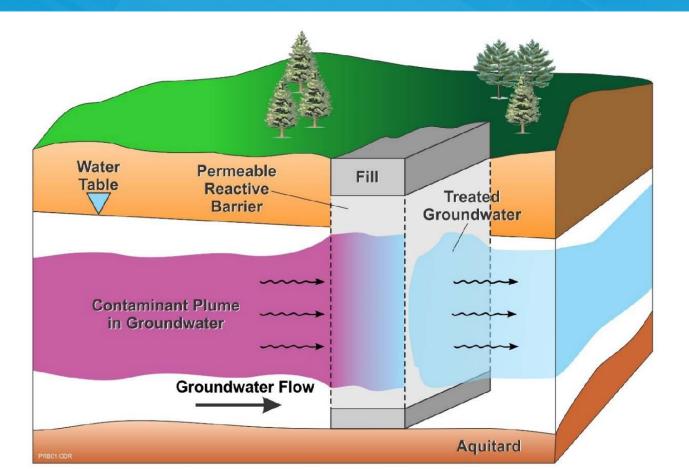
Q = groundwater flux

K = hydraulic conductivity

I = hydraulic gradient

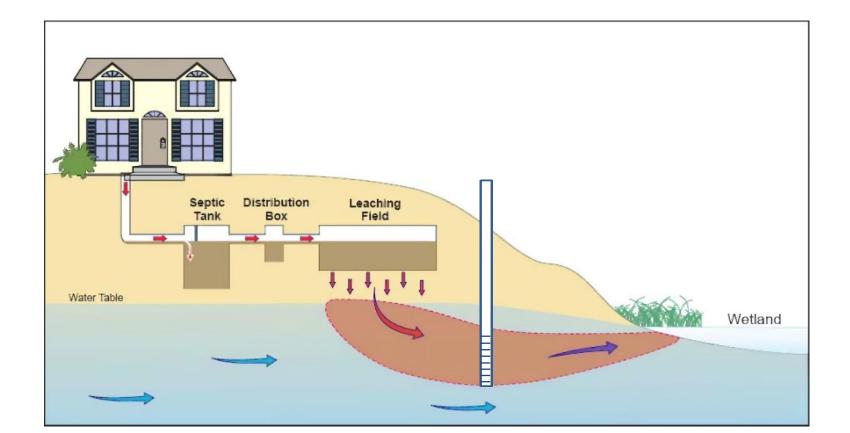
A = cross sectional area of aquifer

Available Treatment Technologies

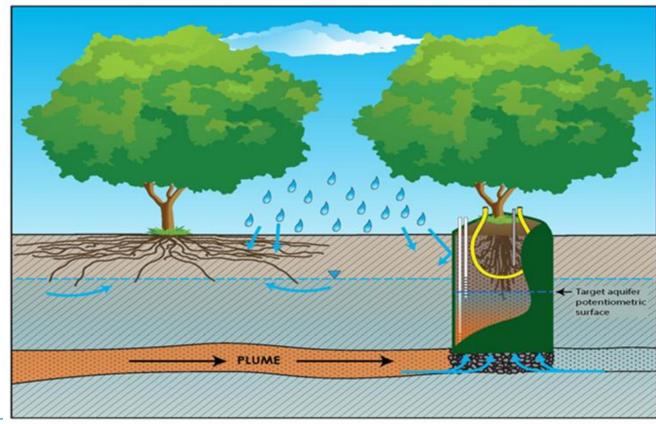

Geosyntec consultants

What are the available treatment technologies?

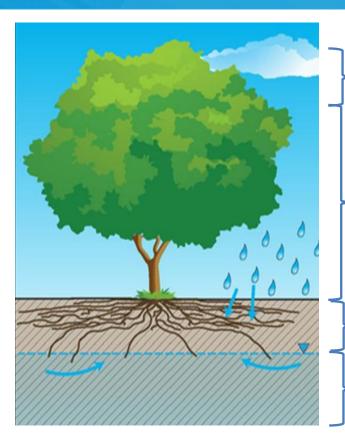
- Suitable treatment options could include the approaches below:
 - Permeable reactive barriers;
 - Groundwater capture and treatment systems; and
 - Phytotechnology including TreeWells[®]


Permeable Reactive Barriers

Groundwater Capture and Treatment Systems



Engineered Phytotechnology: The Tree Well® System



- Patented by **Applied Natural** Sciences (ANS)
- Geosyntec is licensed for the design and use of *TreeWell*® systems
- Flow rate for each tree expected between 40-50 GPD at full tree maturity

Key Mechanisms of Phytoremediation

Phytovolatilization

VOCs volatilize off leaf surface (1,4-Dioxane, TCE)

Phytoextraction

Uptake and removal of contaminants through the roots

Phytodegradation

In Planta degradation (TCE, TNT)

Phytosequestration

In Planta sequestration or accumulation (salts, metals/metalloids)

Typically a combination of these mechanisms at work concurrently

Rhizodegradation/Rhizofixation/Chelation

Microbial degradation in the rhizosphere (salts, metals, organic contaminants)

Chemical Reduction

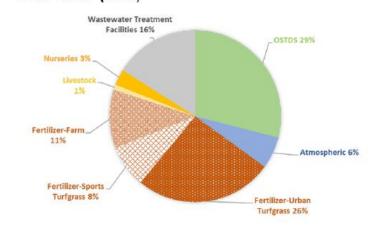
Strongly reducing conditions (organic contaminants)

Phytohydraulics

Groundwater uptake

Wekiva Springs PFA Case Studies

Geosyntec consultants



Wekiva PFA Case Studies

- TN and TP water quality goals have been established for the Wekiva Spring BMAP and PFA
 - Current Wekiva Spring concentration ranging between approx. 0.75 and 1.5 mg/L NO3
 - Goal concentration of 0.238 mg/L NO3
- Stakeholders have goals for nutrient removal
- Orange County commissioned a feasibility study was conducted to identify project opportunities for nutrient removal
- Several groundwater projects were identified as opportunity for significant nutrient reduction

NSILT BMAP (2018)

Wekiva PFA Case Studies – Well Monitoring Data

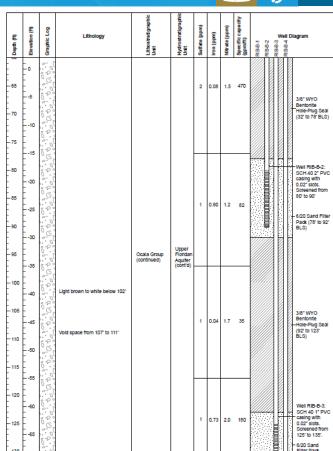
- Surficial Aquifer System (SAS) 25-40 ft BLS
- Intermediate Aquifer System (IAS) 15-90 ft BLS
- Upper Floridan Aquifer (UFA) 115-210 ft BLS

Data evaluated for trend analysis

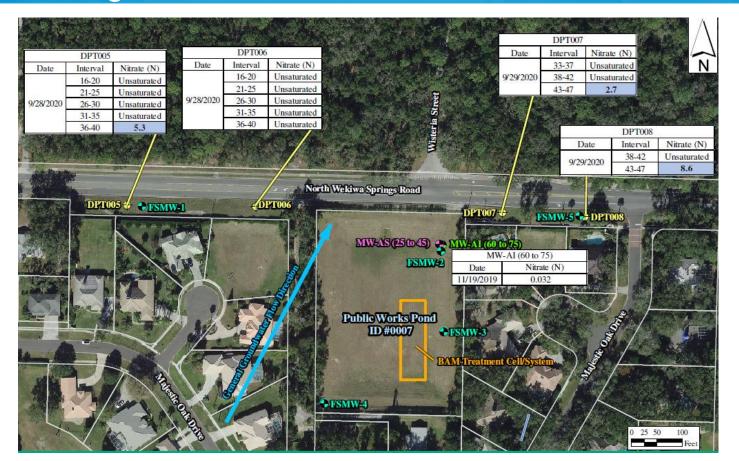
- Time series plots to identify increasing or decreasing trends
- Box plot seasonal comparisons
- Comparisons to the median concentrations to identify elevated groundwater concentrations

Well ID	TN Trend	TP Trend
BW-02	Neutral	Decreasing
MW-01	Neutral	Decreasing
MW-02	Increasing	Neutral
MW-03	Decreasing	Decreasing
MW-04*	Decreasing	Neutra1
MW-04R*	Neutral	Neutra1
MW-06	Decreasing	Decreasing
MW-07	Decreasing	Decreasing
MW-11	Neutral	Neutra1
MW-14	Decreasing	Decreasing
MW-15	Increasing	Decreasing
MW-17	Increasing	Decreasing
MW-20	Decreasing	Decreasing
MW-22	Decreasing	Decreasing
MW-AI	Decreasing	Increasing
MW-BS	Neutral	Neutral
MW-BU	Neutral	Neutra1
MW-CI	Decreasing	Increasing
MW-CU	Increasing	Neutra1
MW-DS	Decreasing	Neutra1
MW-DU	Decreasing	Increasing
MW-EU	Increasing	Increasing
SW-01	Increasing	Increasing
XDEPFLD	Decreasing	Increasing
XDEPPBD	Increasing	Neutra1
XDEPPBS	Neutral	Neutra1

Well ID	Well Screen Aquifer Zone	Median TN (mg/L)	Minimum TN Concentration (mg/L)	Maximum TN Concentration (mg/L)
BW-02	SAS	0.66	0.17	1.59
MW-01	SAS	2.57	1.97	4.09
MW-02	IAS	1.31	0.26	4.04
MW-03	IAS	0.47	0.22	0.72
MW-04	SAS	12.30	7.56	14.80
MW-04R	SAS	9.29	8.59	11.79
MW-06	SAS	0.29	0.11	4.40
MW-07	SAS	1.93	0.39	7.83
MW-11	IAS	2.59	1.19	4.05
MW-14	SAS	0.14	0.01	2.07
MW-15	IAS	1.02	0.50	1.39
MW-17	SAS	0.49	0.01	12.64
MW-20	SAS	3.16	0.58	18.30
MW-22	IAS	2.43	0.76	8.32
MW-AI	IAS	0.11	0.01	0.52
MW-BS	SAS	1.38	0.98	15.40
MW-BU	UFA	1.46	0.96	15.00
MW-CI	IAS	0.27	0.01	1.40
MW-CU	UFA	1.01	0.27	4.50
MW-DS	SAS	2.06	1.59	2.90
MW-DU	UFA	0.09	0.02	1.10
MW-EU	UFA	0.54	0.05	1.00
SW-01	SAS	1.13	0.12	1.77
XDEPFLD	UFA	0.06	0.00	0.51
XDEPPBD	UFA	0.18	0.04	0.67
XDEPPBS	SAS	0.87	0.51	3.09

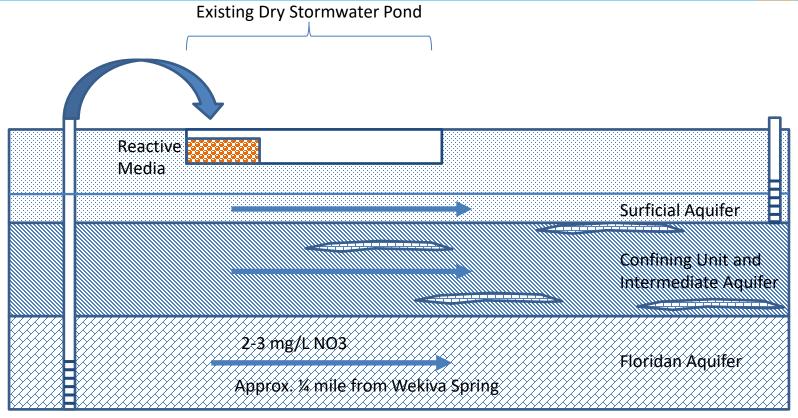

Wekiva PFA Case Studies – Site Lithology

- Heterogenous conditions noted during drilling
- High permeability zones coincided with high nutrient zones
- High yield supply of elevated nitrate groundwater was confirmed
- Downgradient, background and side gradient monitoring well system was installed
- Pre-construction groundwater monitoring underway
- Project design underway
- Potential to remove up to approx. 1,000 lbs of nitrate on an average annual basis



•

Wekiva PFA Case Studies – Site Groundwater Investigation

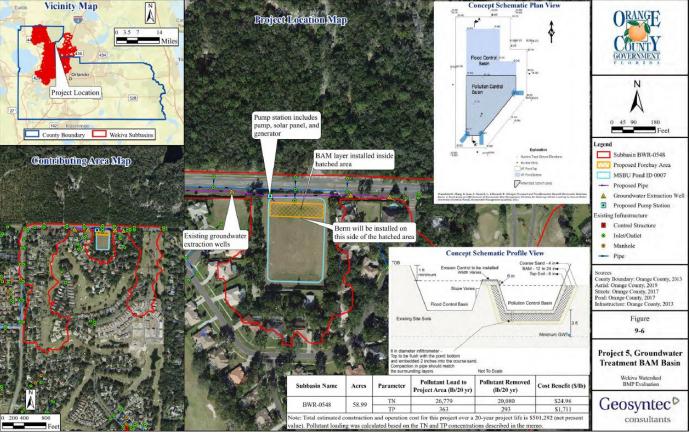


Case Study #1: Case Study #1: Nutrient Removal Groundwater Feasibility Study

P

Project Identification and Prioritization

- Utilizes portion of dry retention pond to create a treatment area with BAM
- Pump water from aquifer to treatment area
- System can operate during dry periods and have sensor to cut off when rainfall is received
- Allows for near continuous treatment of groundwater


Subbasin Name	Acres	Parameter	Pollutant Load to Project Area (lb/20 yr)	Pollutant Removed (lb/20 yr)	Cost Benefit (\$/lb)
BWR-0548	58.99 TN TP	TN	26,779	20,080	\$24.96
		363	293	\$1,711	

Note: Total estimated construction and operation cost for this project over a 20-year project life is \$501,292 (net present value). Pollutant loading was calculated based on the TN and TP concentrations described in the memo.

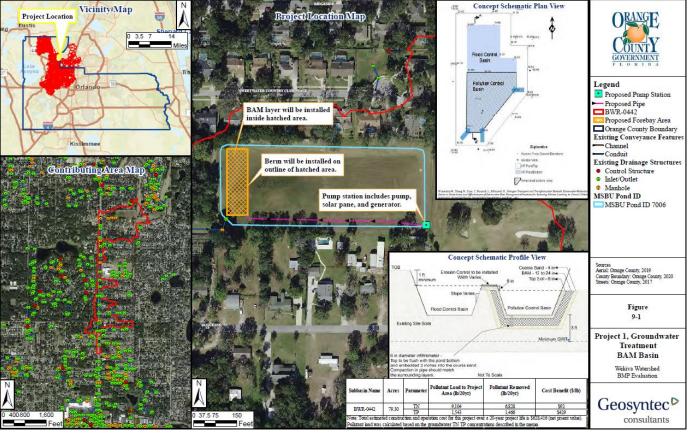
(P)

Project Identification and Prioritization

Project Identification and Prioritization

Project 1 Groundwater Treatment BAM Basin

- Utilizes portion of dry retention pond to create a treatment area with BAM
- Pump water from aquifer to treatment area
- System can operate during dry periods and have sensor to cut off when rainfall is received
- Allows for near continuous treatment of groundwater


Subbasin Name	Acres	Parameter	Pollutant Load to Project Area (lb/20yr)	Pollutant Removed (lb/20yr)	Cost Benefit (\$/lb)
BWR-0442 79.	79.30	TN	9,104	6,828	\$92
	19.30	TP	1,543	1,466	\$429

Note: Total estimated construction and operation cost for this project over a 20-year project life is \$628,416 (net prsent value). Pollutant load was calculated based on the groundwater TN TP concentrations described in the memo.

(P)

Project Identification and Prioritization

Closing Thoughts

Geosyntec consultants

(P)

Closing Thoughts

- Treating groundwater from diffuse sources is very difficult
- Its important to understand the lag of "legacy" groundwater pollutants when evaluating water quality goals
- Perform subsurface investigations to use data driven approach to treatment
 - Wide monitoring network that covers a large area and located near potential sources of interest
 - Implement high-resolution assessment to identify heterogeneity within aquifer systems in order to focus remedial efforts to high transmissivity zones

Closing Thoughts

- Quantification of the groundwater/nutrient flux is required for a successful project
- Leverage state-of-the-art remediation techniques to address groundwater nutrient issues
- Leverage under-utilized space

Acknowledgements

Orange County Environmental Protection Division

Matt Wissler, PG – Geosyntec Consultants, Inc.

Geosyntec consultants

Questions?

